p-Adic scaled space filling curve indices

Patrick Erik Bradley

Institute of Photogrammetry and Remote Sensing (IPF)
Geodetic Institute (GIK)
© Karlsruhe Institute of Technology (KIT)
p-adics. 2021
Mexico City, online
May 17 - May 28, 2021

Section

Bioinformatics, Data Analytics and Applications

Preliminaries

- joint work with Markus Jahn in geo-informatics
- Most of this presentation published in
P.E. Bradley and M.W. Jahn. On the Behaviour of p-Adic Scaled Space Filling Curve Indices for High-Dimensional Data. The Computer Journal, 2020. doi: 10.1093/comjnl/bxaa036 (no volume and page numbers yet...)

Contents

1. Introduction
2. Hilbert Curves
3. p-adic Gray Code
4. p-adic Gray Hilbert Curves
5. p-adic Scaled Hilbert Indexing Methods
6. Locality Properties
7. Experiments
8. Possible Application
9. Conclusions

1. Introduction

- 1877. Cantor proved $|\mathbb{R}|=\left|\mathbb{R}^{n}\right|, n \geq 1$
- 1890. Peano finds continuous bijection $[0,1] \rightarrow[0,1]^{2}$
- Method: iterative trisections.
- ~ 3-adic space-filling curve
- 1891. Hilbert obtains a binary construction of a SFC.
- 2-adic SFC
- 20th century. Higher-dimensional realisations of Hilbert's SFC via Gray Code.
- Question: How many are there? \sim Lots!

2. Hilbert Curves

First two iterations

2. Hilbert Curves

Hilbert Tree

2. Hilbert Curves

Locality Property. Points nearby on the curve are nearby in $[0,1]^{2}$.

Not vice versa!

2. Hilbert Curves

p-adic discrete curve. A bijective map

$$
C:\left\{0, \ldots, p^{r}-1\right\} \rightarrow\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)^{r}
$$

is a p-adic discrete curve of order k and dimension r, if

$$
d_{H}(C(i), C(i+1))=1
$$

for $i=0, \ldots, p^{r}-2$, and d_{H} is the Hamming distance.
$\mathcal{C}(k, r)=\{p$-adic curves of order k and dimension $r\}$

2. Hilbert Curves

Let

$$
C \in \mathcal{C}_{m}(1, r)
$$

Then

$$
\operatorname{Aut}_{C}(\mathbb{Z} / m \mathbb{Z})^{r}=\left\{\sigma \in \operatorname{Sym}(\mathbb{Z} / m \mathbb{Z})^{r}: \sigma \circ C \in \mathcal{C}_{m}(1, r)\right\}
$$

is the C-automorphism group.

2. Hilbert Curves

Refinement.

$$
\begin{aligned}
\varpi^{k}:(\mathbb{Z} / p \mathbb{Z})^{r} \rightarrow\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)^{r} \\
\left(x_{1}, \ldots, x_{r}\right) \mapsto\left(x_{1} p^{k-1} \quad \bmod p^{k}, \ldots, x_{r} p^{k-1} \quad \bmod p^{k}\right)
\end{aligned}
$$

Maps to lower left corner in finer curve.

2. Hilbert Curves

Projection.

$$
\begin{gathered}
\pi^{k}:\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)^{r} \rightarrow(\mathbb{Z} / p \mathbb{Z})^{r} \\
\left(x_{1}, \ldots, x_{r}\right) \mapsto\left(x_{1} \bmod p, \ldots, x_{r} \bmod p\right)
\end{gathered}
$$

2. Hilbert Curves

- $\operatorname{Fix} C \in \mathcal{C}_{p}(1, r)$.
- Let

$$
\tau_{0}, \ldots, \tau_{p^{r}-1} \in \operatorname{Aut}_{C}(\mathbb{Z} / p \mathbb{Z})^{r}
$$

- Construct iteratively: $C_{0}=C, \ldots, C_{k-1} \in \mathcal{C}_{p}(k-1, r)$.

$$
\begin{aligned}
& C_{k}:\left\{0, \ldots, p^{k r}-1\right\} \rightarrow\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)^{r} \\
& i \mapsto \tau_{i^{\prime}}\left(\pi^{k-1}\left(C_{k-1}\left(i \bmod \left(p^{k-1}\right)^{r}\right)\right)\right)+\pi^{k}\left(C\left(i^{\prime}\right)\right) \\
& \quad i^{\prime}=i \operatorname{div}\left(p^{k-1}\right)^{r} \in\left\{0, \ldots, p^{r}-1\right\}
\end{aligned}
$$

- $C_{k} \in \mathcal{C}_{p}(k, r)$

Say: $\left(C_{k}\right)$ is a Hilbert family generated by C and $\left(\tau_{k}\right)$.

2. Hilbert Curves

Glueing copies with automorphisms:

τ is a combination of reflections and rotations

2. Hilbert Curves

Lemma. Let p be odd. Then any $C \in \mathcal{C}_{p}(1, r)$ is the generating curve of a Hilbert family.

Idea of proof.
Any two opposite corners of the hypercube can be connected by a discrete p-adic curve, if p is odd. This leads to a refinement of a curve with a suitable automorphism.

2. Hilbert Curves

Lemma. Let p be even. Then a discrete curve $C \in \mathcal{C}_{p}(1, r)$ beginning and ending in a corner satisfies

$$
d_{H}\left(C(0), C\left(p^{r}-1\right)\right)<r
$$

I.e. start and endpoints are not opposite corners of the hypercube.

2. Hilbert Curves

Open Problem. How many different p-adic Hilbert families are there modulo automorphisms of the r-hypercube (i.e. reflections and rotations)?

3. p-adic Gray Code

2-adic reflected Gray code.

$$
\begin{aligned}
& Z_{2}^{n} \rightarrow Z_{2}^{n}, x \mapsto x+(x \triangleright 1) \\
& x \triangleright k: \text { right shift by } k \text { bits }
\end{aligned}
$$

E.g. 3-digit binary numbers in Gray code ordering:

$$
\begin{array}{cccccccc}
000 & 001 & 011 & 010 & 110 & 111 & 101 & 100 \\
0 & 1 & 3 & 2 & 6 & 7 & 5 & 4
\end{array}
$$

start: $(0, \ldots, 0)$ end: $(1,0, \ldots, 0)$
\leadsto common edge in hypercube

3. p-adic Gray Code

p-adic reflected Gray code with $p>2$ odd.

$$
\begin{gathered}
G(1, p)=\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
p-1
\end{array}\right) \\
G(n, p)=\left(\begin{array}{c}
0 \times G(n-1, p) \\
1 \times G(n-1, p)^{R} \\
\vdots \\
p-2 \times G(n-1, p)^{R} \\
p-1 \times G(n-1, p)
\end{array}\right)
\end{gathered}
$$

$(\cdots)^{R}$ means in reverse order!

p-adic Gray Code

Example. $G(2,3)$.

In General. Start and end points are opposite corners!

3. p-adic Gray Code

p-adic reflected Gray code with $p>2$ even.

$$
\begin{gathered}
G(1, p)=\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
p-1
\end{array}\right) \\
G(n, p)=\left(\begin{array}{c}
0 \times G(n-1, p) \\
1 \times G(n-1, p)^{R} \\
\vdots \\
p-2 \times G(n-1, p) \\
p-1 \times G(n-1, p)^{R}
\end{array}\right)
\end{gathered}
$$

$(\cdots)^{R}$ means in reverse order!

3. p-adic Gray Code

Example. $G(2,4)$.

In General. Start and end points are corners with common edge!

4. p-adic Gray Hilbert Curves

Apply transformations of the type

$$
T: Z_{p}^{n} \rightarrow Z_{p}^{n}, x \mapsto x^{\tau}+e
$$

- coordinate permutation $\tau \in S_{n}$
- translation with $e \in Z_{p}^{n}$
to construct affine p-adic Gray Hilbert Curves.

4. p-adic Gray Hilbert Curves

Construction.

- Let a, b be sub-hypercubes of $[0,1]^{n}$ w.r.t. to a p-adic subdivision
- Assume a, b are consecutive in given p-adic reflected Gray Code.

4. p-adic Gray Hilbert Curves

Case: podd.

- Choose an ordering of coordinates for a.
- f_{a} : endpoint of $G(n, p)$ w.r.t. a.
- f_{a} is opposite to start point $\Rightarrow f_{a}$ neighbours b

4. p-adic Gray Hilbert Curves

Case: p even.

- f_{a} : corner of a neighbouring b s.t.
f_{a} different with origin of a in only one coordinate
- Choose ordering of remaining coordinates.
- Corresponding Gray code ends in f_{a}.

4. p-adic Gray Hilbert Curves

Both cases.

- e_{b} : corner in $a \cup b$ neighbouring f_{a}
- Bring origin of Z_{p}^{n} to e_{b} via translation
- Continue the whole process with b, c
- c : next hypercube in Gray code order for b.

Result. Affine p-adic Gray Hilbert curve.
Remark. Number of possibilities exponential in n.

5. p-adic Scaled Hilbert Indexing Methods

Traditional (Static).

- High depth $=$ lots of empty leaf nodes

5. p-adic Scaled Hilbert Indexing Methods

New (dynamic).

- Take smallest sub-tree containing leaf nodes with data.
- Order those leaf nodes along Gray Hilbert curve.
- \sim most efficient index sub-structure (after removing non-fork nodes)
- efficient insert/delete/retrive methods

6. Locality Properties

$p=2$, normally distributed, "bubble"

static

6. Locality Properties

$p=2$, normally distributed, "ring"

6. Locality Properties

$p=3$, normally distributed, "bubble"

6. Locality Properties

$p=3$, normally distributed, "ring"

6. Locality Properties

$p=4$, normally distributed, "bubble"

static

6. Locality Properties

$p=5$, normally distributed, "bubble"

6. Locality Properties

- $S \subset[0,1]^{n}$ (finite) point cloud
- nodes of GH tree: buckets
- buckets are: empty, filled, underfilled, or overfilled w.r.t. bucket capacity s>0
- $\omega(T, S)=\frac{\text { \# overfilled leaf nodes of } T}{\text { \# non-empty leaf nodes of } T}$
- $L(T)=\{$ leaf nodes of $T\}$

$$
\Omega(T, S)=(1+\omega(T, S)) \cdot|L(T)|
$$

capacity of T for data S

6. Locality Properties

Capacity ratio.

$$
R\left(T_{1}, T_{2} ; S\right)=\frac{\Omega\left(T_{1}, S\right)}{\Omega\left(T_{2}, S\right)}
$$

- $T_{\text {static }}$: static GH tree with maximal iteration number

$$
k=\left\lceil\frac{\log _{p} \frac{|S|}{s}}{n}\right\rceil
$$

- $T_{\text {scaled }}: \mathrm{GH}$ tree for S

6. Locality Properties

Motivation. Want to have

$$
p^{n k} \approx \frac{|S|}{s}
$$

as number of leaf nodes in $T_{\text {static }}$.
\leadsto on average no leaf node overfilled.

6. Locality Properties

$$
k=\frac{\log _{p} \frac{|S|}{s}}{n}+\epsilon_{p}
$$

with $\epsilon_{p} \in[0,1)$.
Theorem. If $\frac{\log _{p} s}{n}<\epsilon_{p}$, then $T_{\text {scaled }}$ is more storage efficient than $T_{\text {static }}$, and relative efficiency increases with increasing dimension n. For fixed n, this is the case, if bucket capacity s is sufficiently small.

Idea of Proof.

- $R_{p}(S)=R\left(T_{\text {scaled }}, T_{\text {static }} ; S\right) \rightarrow 0$ for $n \rightarrow \infty$
- $\epsilon_{p} \rightarrow 1$ for $n \rightarrow \infty$
- The bound leads to $R_{p}(S) \leq 1$.

6. Locality Properties

p-adic GH local sparsity measure.

$$
\rho_{p}(S, s)=\frac{-\log _{p}\left(R_{p}(S) / s\right)-n \epsilon_{p}}{\log _{p}(2 s)} \in[0,1]
$$

We expect this quantity to depend on distribution of S only, if s is fixed.

7. Experiments

Iris data-set.

- original data embedded in four dimensions
- complete disjunctive form (cdf): embedding dimension is 400
- BCH 1275027 encoding: embedding dimension is 431

7. Experiments

iris bubble

7. Experiments

iris ring

7. Experiments

iris $p=2,3,4,5,6,7$

7. Experiments

- High embedding dimension \Rightarrow local sparseness
- $\rho_{p}(S, s)$ independent of p in this case
- Murtagh had observed high ultrametricity in this case!
- Relationship: local sparsity and ultrametricity?

8. Possible Application

p-adic pde on a dag in Euclidean space.

- Γ : dag with vertices in $[0,1]^{n}$
- E : edge relation of Γ
- T: p-adic GH Curve Index for vertices of Γ
- Leaf nodes of T define p-adic discs in \mathbb{Q}_{p}^{n}
- L: p-adic graph Laplace operator made from E à la Wilson Zúñiga-Galindo
- study dynamics on 「 in parallel using T !

8. Possible Application

Example for such a dag.

- convex polytope complex in \mathbb{R}^{n}
- dag vertices: the centres of the polytopes
- edges: boundary relationships (weighted with polytope volumes)
- Example scenario: city models in not too large detail
- Example pde: heat flow through buildings and their parts

8. Possible Application

p-adic graph Laplace operator.

Γ : finite graph with vertex set $V(\Gamma)$.

- Fix an embedding $V(\Gamma) \rightarrow \mathbb{Q}_{p}$.
- Fix N s.t. the balls

$$
B_{-N}(I)=\left\{x \in \mathbb{Q}_{p}:|x-I|_{p} \leq p^{-N}\right\}
$$

with $I \in V(\Gamma)$ are disjoint.

$$
K_{N}:=\bigcup_{I \in V(\Gamma)} B_{-N}(I) \subset \mathbb{Q}_{p}
$$

8. Possible Application

p-adic graph Laplace operator.

- $n=|V(\Gamma)|$
- $A=\left(A_{I J}\right) \in \mathbb{C}^{n \times n}$ corresponds to function:

$$
\begin{gathered}
A: K_{N} \times K_{N} \rightarrow \mathbb{C},(x, y) \mapsto A(x, y) \\
A(x, y)=p^{N} \sum_{I \in V(\Gamma)} \sum_{J \in V(\Gamma)} A_{I J} \Omega\left(p^{N}|x-I|_{p}\right) \Omega\left(p^{N}|y-J|_{p}\right)
\end{gathered}
$$

- Graph Laplacian $L=A-\left(\gamma_{I} \delta_{I J}\right)$ corresponds to

$$
\begin{aligned}
& \mathcal{L}: L^{2}\left(K_{N}, \mathbb{C}\right) \rightarrow L^{2}\left(K_{N}, \mathbb{C}\right) \\
& u(x) \mapsto \mathcal{L} u(x)=\int_{K_{N}} A(x, y)(u(y)-u(x)) d y
\end{aligned}
$$

Zúñiga-Galindo's p-adic graph Laplace operator.

9. Conclusions

- theoretical approach to p-adic index structures
- Gray Code + Hilbert Curve + any dimension + any p
- \leadsto tree + linear ordering of nodes with nice locality
- plethora of index structures
- measure for sparsity of a point cloud
- potential application: p-adic parallel solver for p-adic pde on dag with vertices in Euclidean space
- future work: p-adic approach to flows on city models
- in review: p-adic wave equations on finite graphs and T_{0}-spaces

References

1. P.E. Bradley. p-Adic Wave Equations on finite Graphs and T_{0}-spaces. In review.
2. P.E. Bradley and M.W. Jahn. On the Behaviour of p-Adic Scaled Space Filling Curve Indices for High-Dimensional Data. The Computer Journal, 2020. doi: 10.1093/comjnl/bxaa036
3. W.A. Zúñiga-Galindo. Reaction-diffusion equations on complex networks and Turing patterns, via p-adic analysis. Journal of Mathematical Analysis and Applications, 491(1):124239, 2020.
